pyconll Documentation
Release 1.0.2

Matias Grioni

Dec 11, 2018

Contents

pyconll

L1 LInKS . . . o o e e e e e e e
CHANGELOG

2.1 [1.1.0]-2018-11-11 o e e e e e e e e
2.2 [1.0.1]-2018-09-14 e e e e e e
2.3 [1.0]-2018-09-13 e e e e e e
2.4 [0.3.1]1-2018-08-08 o e e
2.5 [0.3]-2018-07-28 . . . o o e e e
2.6 [0.2.3]1-2018-07-23 e e e e e e
2.7 [0.2.2]1-2018-07-18 e e e e e e
2.8 [0.2.1]1-2018-07-18 e e e e e e e
2.9 [0.2]-2018-07-16 e e e e
2.10 [0.1.1]-2018-07-15 o e e e
2.11 [0.1]-2018-07-04 e e e e
conllable

3.1 APL . e e
exception

4.1 APL . . e
load

5.1 Example . .. oL e e e e
52 APL . . e e
sentencetree

6.1 APL . . . e
tree

T.1 APL . e e e e
util

8.1 APIL . . e e e e
conll

0.1 AP . . e e e e e

W W

O O O O \O 0000000 JI

13
13

15
15
16

19
19

21
21

23
23

25

10 sentence
10.1 CommentS v v e e e e e e e e e e e e e e e e e e e
10.2 Document and Paragraph ID
10.3 Tokens
104 API

11 token
11.1 Fields
11.2 API

Python Module Index

27
27
27
27
28

31
31
32

35

pyconll Documentation, Release 1.0.2

Contents 1

https://travis-ci.org/pyconll/pyconll
https://coveralls.io/github/pyconll/pyconll?branch=master
https://pyconll.readthedocs.io/en/latest/?badge=latest

pyconll Documentation, Release 1.0.2

2 Contents

CHAPTER 1

pyconll

Easily work with **CoNLL* files using the familiar syntax of python.*

The current version is 1.1.0. This version is fully functional, stable, tested, documented, and actively developed.

1.1 Links

* Homepage

¢ Documentation

1.1.1 Motivation

When working with the Universal Dependencies project, there are a dissapointing lack of low level APIs. There are
many great tools, but few are general purpose enough. Grew is a great tool, but it is slightly limiting for some tasks
(and extremely productive for others). Treex is similar to Grew in this regard. CL-CoNLLU is a good tool in this
regard, but it is written in a language that many are not familiar with, Common Lisp. UDAPI might fit the bill with its
python API, but the package itself is quite large and the documentation impossible to get through. Various more tools
can be found on the Universal Dependencies website and all are very nice pieces of software, but most of them are
lacking in this desired usage pattern. pyconll creates a thin API on top of raw CoNLL annotations that is simple
and intuitive. This is an attempt at a small, minimal, and intuitive package in a popular language that can be used as
building block in a complex system or the engine in small one off scripts.

Hopefully, individual researchers will find use in this project, and will use it as a building block for more popular tools.
By using pyconll, researchers gain a standardized and feature rich base on which they can build larger projects and
not worry about CoNLL annotation and output.

1.1.2 Code Snippet

https://pyconll.github.io
https://pyconll.readthedocs.io/

pyconll Documentation, Release 1.0.2

import pyconll
UD_ENGLISH_TRAIN = './ud/train.conll'
train = pyconll.load_from_ file (UD_ENGLISH_TRAIN)

for sentence in train:
for token in sentence:
Do work here.
if token.form == 'Spain':
token.upos = 'PROPN'

More examples can be found in the examples folder.

1.1.3 Uses and Limitations

The usage of this package is to enable editing of CoNLL-U format annotations of sentences. Note that this does not
include the actual text that is annotated. For this reason, word forms for Tokens are not editable and Sentence Tokens
cannot be reassigned. Right now, this package seeks to allow for straight forward editing of annotation in the CoNLL-
U format and does not include changing tokenization or creating completely new Sentences from scratch. If there is
interest in this feature, it can be revisted for more evaluation.

1.1.4 Installation

As with most python packages, simply use pip to install from PyPi.

pip install pyconll

This package is designed for, and only tested with python 3.4 and above. Backporting to python 2.7 is not in future
plans.

1.1.5 Documentation

The full API documentation can be found online at https://pyconll.readthedocs.io/. Examples can be found in the
examples folder and also in the test s folder.

1.1.6 Contributing

If you would like to contribute to this project you know the drill. Either create an issue and wait for me to repond and fix
it or ignore it, or create a pull request or both. When cloning this repo, please run make hooks and pip install
-r requirements.txt to properly setup the repo. make hooks setups up the pre-push hook, which ensures
the code you push is formatted according to the default YAPF style. pip install -r requirements.txt
simply sets up the environment with dependencies like yapf, twine, sphinx, and so on.

README and CHANGELOG

When changing either of these files, please runmake docs so that the . rst versions stay in sync. The main version
is the markdown version.

4 Chapter 1. pyconll

https://pyconll.readthedocs.io/

pyconll Documentation, Release 1.0.2

Code Formatting

Code formatting is done automatically on push if githooks are setup properly. The code formatter is YAPF, and using
this ensures that new code stays in the same style.

1.1. Links 5

pyconll Documentation, Release 1.0.2

6 Chapter 1. pyconli

CHAPTER 2

CHANGELOG

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

2.1 [1.1.0] - 2018-11-11

2.1.1 Added

e pylint to build process
* Conllable abstract base class to mark CoNLL serializable components

» Tree data type construction of a sentence

2.1.2 Changed

* Linting patches suggested by pylint.

* Removed _end_1line_number from Sentence constructor. This is an internal patch, as this parameter was
not meant to be used by callers.

* New, improved, and clearer documentation

» Update of requests dependency due to security flaw

2.2 [1.0.1] - 2018-09-14

2.2.1 Changed

* Removed test packages from final shipped package.

http://keepachangelog.com/en/1.0.0/
http://semver.org/spec/v2.0.0.html

pyconll Documentation, Release 1.0.2

2.3 [1.0] - 2018-09-13

2.3.1 Added

* There is now a FormatError to help make debugging easier if the internal data of a Token is put into an invalid
state. This error will be seen on running Token#conll.

¢ Certain token fields with empty values, were not output when calling Token#conl1 and were instead ignored.
This situation now causes a FormatError.

* Stricter parsing and validation of general CoNLL guidelines.

2.3.2 Fixed

* DEPS parsing was broken before and assumed that there was less information than is actually possible in the
UD format. This means that now deps is a tuple with cardinality 4.

2.4 [0.3.1] - 2018-08-08

2.4.1 Fixed

* Fixed issue with submodules not being packaged in build

2.5 [0.3] - 2018-07-28

2.5.1 Added

* Ability to easily load CoNLL files from a network path (url)

* Some parsing validation. Before the error was not caught up front so the error could unexpectedly later show
up.
* Sentence slicing had an issue before if either the start or end was omittted.

* More documentation and examples.

* Conll is now a MutableSequence, so it handles methods beyond its implementation as well as defined by
python.

2.5.2 Fixed

* Some small bug fixes with parsing the token dicts.

2.6 [0.2.3] - 2018-07-23

2.6.1 Fixed

* Issues with documentation since docstrings were not in RST. Fixed by using napoleon sphinx extension

8 Chapter 2. CHANGELOG

pyconll Documentation, Release 1.0.2

2.6.2 Added

¢ A little more docs
¢ More README info

* Better examples

2.7 [0.2.2] - 2018-07-18
2.7.1 Fixed
* Installation issues again with wheel when using pip.
2.8 [0.2.1] - 2018-07-18
2.8.1 Fixed
¢ Installation issues when using pip
2.9 [0.2] - 2018-07-16

2.9.1 Added

¢ More documentation

» Util package for convenient and common logic

2.10 [0.1.1] - 2018-07-15

2.10.1 Added

¢ Documentation which can be found here.

* Small documentation changes on methods.

2.11 [0.1] - 2018-07-04

2.11.1 Added

» Everything. This is the first release of this package. The most notable absence is documentation which will be
coming in a near-future release.

2.7. [0.2.2] - 2018-07-18 9

https://pyconll.readthedocs.io/en/latest/

pyconll Documentation, Release 1.0.2

10 Chapter 2. CHANGELOG

CHAPTER 3

conllable

Conllable marks a class that can be output as a CoNLL formatted string. Conllable classes implementa conll
method.

3.1 API

Holds the Conllable interface, which is a marker interface to show that a class is a Conll object, such as a treebank,
sentence, or token, and therefore has a conll method.

class pyconll.conllable.Conllable
A Conllable mixin to indicate that the component can be converted into a CoNLL representation.

__metaclass_
alias of abc . ABCMeta

conll ()
Provides a conll representation of the component.

Returns A string conll representation of the base component.

Raises Not ImplementedError — If the child class does not implement the method.

11

pyconll Documentation, Release 1.0.2

12 Chapter 3. conllable

CHAPTER 4

exception

Custom exceptions for pyconll. These errors are a ParseError and a FormatError.

A ParseError occurs when the source input to a CoNLL component is invalid, and a FormatError occurs when
the internal state of the component is invalid, and the component cannot be output to a CoNLL string.

4.1 API

Holds custom pyconll errors. These errors include parsing errors when reading treebanks, and errors when outputting
CoNLL objects.

exception pyconll.exception.FormatError
Error that results from trying to format a CoNLL object to a string.

exception pyconll.exception.ParseError
Error that results from an improper value into a parsing routine.

13

pyconll Documentation, Release 1.0.2

14 Chapter 4. exception

CHAPTER B

load

This is the main module to interface with to load an entire CoNLL treebank resources. The module defines methods
for loading a CoNLL treebank through a string, file, or network. There also exist methods that iterate over the CoNLL
resource data rather than storing the large CoNLL object in memory, if so desired.

Note that the fully qualified name is pyconll . load, but these methods can also be accessed using the pyconll
namespace.

5.1 Example

This example counts the number of times a token with a lemma of 1inguistic appeared in the treebank. If all the
operations that will be done on the CoNLL file are readonly or are data aggregations, the iter_from alternatives
are more efficient and recommended. These methods will return an iterator over the sentences in the CoNLL resource
rather than storing the CoNLL object in memory, which can be convenient when dealing with large files that do not
need be completely loaded.

import pyconll

example_treebank = '/home/myuser/englishdata.conll'
conll = pyconll.iter_from file(example_treebank)
count = 0

for sentence in conll:
for word in sentence:
if word.lemma == 'linguistic':
count += 1

print (count)

15

pyconll Documentation, Release 1.0.2

5.2 API

A wrapper around the Conll class that allow for easy loading of treebanks from multiple formats. This module also
contains logic for iterating over treebank data without storing Conll objects in memory.

pyconll.load.iter_ from_ file (filename)
Iterate over a CoNLL-U file’s sentences.

Parameters filename — The name of the file whose sentences should be iterated over.
Yields The sentences that make up the CoNLL-U file.
Raises

* IOError if there is an error opening the file.

* ParseError — If there is an error parsing the input into a Conll object.

pyconll.load.iter_ from_string (source)
Iterate over a CoNLL-U string’s sentences.

Use this method if you only need to iterate over the CoNLL-U file once and do not need to create or store the
Conll object.

Parameters source — The CoNLL-U string.
Yields The sentences that make up the CoNLL-U file.
Raises ParseError — If there is an error parsing the input into a Conll object.

pyconll.load.iter_from_url (url)
Iterate over a CoNLL-U file that is pointed to by a given URL.

Parameters url — The URL that points to the CoNLL-U file.
Yields The sentences that make up the CoNLL-U file.
Raises

* requests.exceptions.RequestException — If the url was unable to be properly
retrieved.

* ParseError — If there is an error parsing the input into a Conll object.

pyconll.load.load from_file (filename)
Load a CoNLL-U file given the filename where it resides.

Parameters f£ilename — The location of the file.
Returns A Conll object equivalent to the provided file.
Raises
* IOError — If there is an error opening the given filename.
* ParseError — If there is an error parsing the input into a Conll object.

pyconll.load.load_from string (source)
Load CoNLL-U source in a string into a Conll object.

Parameters source — The CoNLL-U formatted string.
Returns A Conll object equivalent to the provided source.

Raises ParseError —If there is an error parsing the input into a Conll object.

16 Chapter 5. load

pyconll Documentation, Release 1.0.2

pyconll.load.load_from_url (url)
Load a CoNLL-U file that is pointed to by a given URL.

Parameters url — The URL that points to the CoNLL-U file.
Returns A Conll object equivalent to the provided file.
Raises

* requests.exceptions.RequestException — If the url was unable to be properly
retrieved and status was 4xx or 5xx.

* ParseError — If there is an error parsing the input into a Conll object.

5.2. API 17

pyconll Documentation, Release 1.0.2

18 Chapter 5. load

CHAPTER O

sentencetree

A SentenceTree is a thin wrapper around a Sentence that also provides a tree based representation of the
sentence. The sentence for a SentenceTree can be retreived through the sentence property and the tree through
the t ree property.

This wrapper is very bare currently and only seeks to create the tree based representation, and does not provide
additional logic. Please create a github issue if you would like to see functionality added in this area!

6.1 API

Create the SentenceTree type as a wrapper around a sentence that constructs a tree as well to traverse the sentence in
a new way.

class pyconll.tree.sentencetree.SentenceTree (sentence)
A Tree wrapper around a sentence. This type will take in an existing serial sentence, and create a tree represen-
tation from it. This type holds both the sentence and the tree representation of the sentence. Note that an empty
sentence input will have no data and no children.

init__ (sentence)
Creates a new SentenceTree given the sentence.

Parameters sentence — The sentence to wrap and construct a tree from.

conll ()
Outputs the provided tree into CoNLL format.

Returns The CoNLL formatted string.

sentence
Provides the unwrapped sentence. This property is readonly.

Returns The unwrapped sentence.

tree
Provides the constructed tree. This property is readonly.

Returns The constructed tree.

19

pyconll Documentation, Release 1.0.2

20 Chapter 6. sentencetree

CHAPTER /

tree

Tree is a very basic immutable tree class. A Tree can have multiple children and has one parent. The parent of a
tree is established when a Tree is added as the child of another Tree.

7.1 API

Defines a base immutable tree type. This type can then be used to create a TokenTree which maps a sentence. This
type is meant to be limited in scope and use and not as a general tree builder module.

class pyconll.tree.tree.Tree (data, children)
A tree node. This is the base representation for a tree, which can have many children which are accessible via
child index. The tree’s structure is immutable, so the parent and children cannot be changed once created.

__getitem__ (key)
Get specific children from the Tree. This can be an integer or slice.

Parameters key — The indexer for the item.

__init__ (data, children)
Create a new tree with the desired properties.

Parameters
¢ data — The data to store on the tree.
¢ children - The children of this node. None if there are no children.

__iter ()
Provides an iterator over the children.

len ()
Provides the number of direct children on the tree.

Returns The number of direct children on the tree.

children
Provides the children of the Tree. The property ensures it is readonly.

21

pyconll Documentation, Release 1.0.2

Returns The list of children nodes.

parent
Provides the parent of the Tree. The property ensures it is readonly.

Returns A pointer to the parent Tree reference.

22 Chapter 7. tree

CHAPTER 8

util

This module provides additional, common methods that build off of the API layer. This module simply adds logic,
rather than extending the API. Right now this module is pretty sparse, but will be extended as needed.

8.1 API

A set of utilities for dealing with pyconll defined types. This is simply a collection of functions.

pyconll.util.find_ngrams (conll, ngram, case_sensitive=True)
Find the occurences of the ngram in the provided Conll collection.

This method returns every sentence along with the token position in the sentence that starts the ngram. The
matching algorithm does not currently account for multiword tokens, so “don’t” should be separated into “do”
and “not” in the input.

Parameters
* sentence - The sentence in which to search for the ngram.
* ngram — The ngram to search for. A random access iterator.
* case_sensitive — Flag to indicate if the ngram search should be case sensitive.

Returns An iterator over the ngrams in the Conll object. The first element is the sentence and the
second element is the numeric token index.

23

pyconll Documentation, Release 1.0.2

24 Chapter 8. util

CHAPTER 9

conll

A collection of CoNLL annotated sentences. For creating new instances of this object, API callers should use the
pyconll.load module to abstract over the resource type. The Conl1 object can be thought of as a simple wrapper
around a list of sentences that can be serialized into a CoNLL format.

Conll is a subclass of MutableSequence, so append, reverse, extend, pop, remove, and __iadd___
are available free of charge, even though they are not defined below.

9.1 API

Defines the Conll type and the associated parsing and output logic.

class pyconll.unit.conll.Conll (if)
The abstraction for a CoNLL-U file. A CoNLL-U file is more or less just a collection of sentences in order.
These sentences can be accessed by sentence id or by numeric index. Note that sentences must be separated by
whitespace. CONLL-U also specifies that the file must end in a new line but that requirement is relaxed here in
parsing.

___contains___ (other)
Check if the Conll object has this sentence.

Parameters other — The sentence to check for.
Returns True if this Sentence is exactly in the Conll object. False, otherwise.

__delitem__ (key)
Delete the Sentence corresponding with the given key.

Parameters key — The info to get the Sentence to delete. Can be the integer position in the file,
or a slice.

__getitem__ (key)
Index a sentence by key value.

Parameters key — The key to index the sentence by. This key can either be a numeric key, or a
slice.

25

pyconll Documentation, Release 1.0.2

Returns The corresponding sentence if the key is an int or the sentences if the key is a slice in
the form of another Conll object.

Raises TypeError — If the key is not an integer or slice.

__init (i)
Create a CoNLL-U file collection of sentences.

Parameters it — An iterator of the lines of the CoNLL-U file.
Raises ParseError —If there is an error constructing the sentences in the iterator.

__iter_ ()
Allows for iteration over every sentence in the CoNLL-U file.

Yields An iterator over the sentences in this Conll object.

_len ()
Returns the number of sentences in the CoNLL-U file.

Returns The size of the CoNLL-U file in sentences.

__setitem__ (key, sent)
Set the given location to the Sentence.

Parameters key — The location in the Conll file to set to the given sentence. This only accepts
integer keys and accepts negative indexing.

conll ()
Output the Conll object to a CoNLL-U formatted string.

Returns The CoNLL-U object as a string. This string will end in a newline.

insert (index, value)
Insert the given sentence into the given location.

This function behaves in the same way as python lists insert.
Parameters
¢ index — The numeric index to insert the sentence into.
* value - The sentence to insert.

write (writable)
Write the Conll object to something that is writable.

For simply writing, this method is more efficient than calling conll then writing since no string of the entire
Conll object is created. The final output will include a final newline.

Parameters writable — The writable object such as a file. Must have a write method.

26 Chapter 9. conll

cHAaPTER 10

sentence

The Sentence module represents an entire CoNLL sentence, which is composed of two main parts: the comments
and the tokens.

10.1 Comments

Comments are treated as key-value pairs, where the separating character between key and value is =. If there is no =
present then then the comment is treated as a singleton, where the key is the comment string and the corresponding
value is None. Read and write methods on this data can be found on methods prefixed with meta_.

For convenience, the id and text of a sentence can be accessed through member properties directly rather than through
metadata methods. So sentence. id, rather than sentence.meta_value ('id"'). Since this API does not
support changing a token’s form, the text comment cannot be changed.

10.2 Document and Paragraph ID

The document and paragraph id of a sentence are automatically inferred from a CoNLL treebank given sentence
comments. Reassigning ids must be done through comments on the sentence level, and there is no API for simplifying
this reassignment.

10.3 Tokens

These are the meat of the sentence. Tokens can be accessed through their id defined in the CoNLL annotation as a
string or as a numeric index. So the same indexing syntax understands, sentence['5'], sentence['2-3"]
and sentence[2].

27

pyconll Documentation, Release 1.0.2

10.4 API

Defines the Sentence type and the associated parsing and output logic.

class pyconll.unit.sentence.Sentence (source, _start_line_number=None)

A sentence in a CoNLL-U file. A sentence consists of several components.

First, are comments. Each sentence must have two comments per UD v2 guidelines, which are sent_id and text.
Comments are stored as a dict in the meta field. For singleton comments with no key-value structure, the value
in the dict has a value of None.

Note the sent_id field is also assigned to the id property, and the text field is assigned to the text property
for usability, and their importance as comments. The text property is read only along with the paragraph and
document id. This is because the paragraph and document id are not defined per Sentence but across multiple
sentences. Instead, these fields can be changed through changing the metadata of the Sentences.

Then comes the token annotations. Each sentence is made up of many token lines that provide annotation to the
text provided. While a sentence usually means a collection of tokens, in this CONLL-U sense, it is more useful
to think of it as a collection of annotations with some associated metadata. Therefore the text of the sentence
cannot be changed with this class, only the associated annotations can be changed.

__eq__ (other)
Defines equality for a sentence.

Parameters other — The other Sentence to compare for equality against this one.

Returns True if the this Sentence and the other one are the same. Sentences are the same when
their comments are the same and their tokens are the same. Line numbers are not including
in the equality definition.

__getitem__ (key)
Return the desired tokens from the Sentence.

Parameters key — The indicator for the tokens to return. Can either be an integer, a string, or
a slice. For an integer, the numeric indexes of Tokens are used. For a string, the id of the
Token is used. And for a slice the start and end must be the same data types, and can be both
string and integer.

Returns If the key is a string then the appropriate Token. The key can also be a slice in which
case a list of tokens is provided.

__init_ (source, start_line_number=None)
Construct a Sentence object from the provided CoNLL-U string.

Parameters
* source — The raw CoNLL-U string to parse. Comments must precede token lines.
e _start_line_number — The starting line of the sentence. For internal use.
Raises ParseError —If there is any token that was not valid.

__iter_ ()
Iterate through all the tokens in the Sentence including multiword tokens.

len_ ()
Get the length of this sentence.

Returns The amount of tokens in this sentence. In the CoNLL-U sense, this includes both all
the multiword tokens and their decompositions.

conll ()
Convert the sentence to a CoNLL-U representation.

28

Chapter 10. sentence

pyconll Documentation, Release 1.0.2

Returns A string representing the Sentence in CoNLL-U format.

doc_id
Get the document id associated with this Sentence. Read-only.

Returns The document id or None if no id is associated.
id
Get the sentence id.

Returns The sentence id. If there is none, then returns None.

meta_present (key)
Check if the key is present as a singleton or as a pair.

Parameters key — The value to check for in the comments.
Returns True if the key was provided as a singleton or as a key value pair. False otherwise.

meta_value (key)
Returns the value associated with the key in the metadata (comments).

Parameters key — The key whose value to look up.

Returns The value associated with the key as a string. If the key is a singleton then None is
returned.

Raises KeyError —If the key is not present in the comments.

par_id
Get the paragraph id associated with this Sentence. Read-only.

Returns The paragraph id or None if no id is associated.

set_meta (key, value=None)
Set the metadata or comments associated with this Sentence.

Parameters
¢ key — The key for the comment.

* value — The value to associate with the key. If the comment is a singleton, this field can
be ignored or set to None.

text
Get the continuous text for this sentence. Read-only.

Returns The continuous text of this sentence. If none is provided in comments, then None is
returned.

10.4. API

29

pyconll Documentation, Release 1.0.2

30 Chapter 10. sentence

cHAPTER 11

token

The Token module represents a CoNLL token annotation. In a CoNLL file, this corresponds to a non-empty, non-
comment line. Token members correspond directly with the Universal Dependencies CoNLL definition and all
values are stored as strings. This means ids are strings as well. These fields are: id, form, lemma, upos, Xpos,
feats, head, deprel, deps, misc

11.1 Fields

All fields are strings except for feats, deps, and misc, which are dicts. Each of these fields has specific
semantics per the UDv2 guidelines.

Since all of these fields are dicts, modifying non existent keys will result in a KeyError. This means that new
values must be added as in a normal dict. For set based dicts, feats and specific fields of mi sc, the new key
must be assigned to an empty set to start. More details on this below.

11.1.1 feats

feats is a key value mapping from st r to set. Note that any keys with empty set s will throw an error, as all keys
must have at least one feature.

11.1.2 deps

deps is a key value mapping from str to tuple of cardinality 4. Most Universal Dependencies treebanks, only
use 2 of these 4 dimensions: the token index and the relation. See the Universal Dependencies guideline for more
information on these 4 components.When adding new deps, the values must also be tuples of cardinality 4. Note that
deps parsing is broken before version 1.0.

31

pyconll Documentation, Release 1.0.2

11.1.3 misc

cl’

Lastly, for misc, the documentation only specifies that the values are separated by a So not all components have
to have a value. So, the values on misc are either None for entries with no ‘=", or set of str. A key with a value
of None is output as a singleton.

11.1.4 Example

Below is an example of adding a new feature to a token, where the key must first be initialized:

token.feats['NewFeature'] = set (('No',))

or alternatively as:

token. feats['NewFeature'] = set ()
token. feats['NewFeature'].add('No")

11.2 API

Defines the Token type and the associated parsing and output logic.

class pyconll.unit.token.Token (source, empty=True, _line_number=None)
A token in a CoNLL-U file. This consists of 10 columns, each separated by a single tab character and ending in
an LF (‘n’) line break. Each of the 10 column values corresponds to a specific component of the token, such as
id, word form, lemma, etc.

This class does not do any formatting validation on input or output. This means that invalid input may be
properly processed and then output. Or that client changes to the token may result in invalid data that can then
be output. Properly formatted CoNLL-U will always work on input and as long as all basic units are strings
output will work as expected. The result may just not be proper CoNLL-U.

Also note that the word form for a token is immutable. This is because CoNLL-U is inherently interested in
annotation schemes and not storing sentences.

__eq__ (other)
Test if this Token is equal to other.

Parameters other — The other token to compare against.

Returns True if the this Token and the other are the same. Two tokens are considered the same
when all columns are the same.

__init__ (source, empty=True, _line_number=None)
Construct the token from the given source.

A Token line must end in an an LF line break according to the specification. However, this method will
accept a line with or without this ending line break.

Further, a ‘_’ that appears in the form and lemma is ambiguous and can either refer to an empty value
or an actual underscore. So the flag empty_form allows for control over this if it is known from outside
information. If, the token is a multiword token, all fields except for form should be empty.

Note that no validation is done on input. Valid input will be processed properly, but there is no guarantee
as to invalid input that does not follow the CoNLL-U specifications.

Parameters

* line — The line that represents the Token in CoONLL-U format.

32 Chapter 11. token

pyconll Documentation, Release 1.0.2

* empty — A flag to signify if the word form and lemma can be assumed to be empty and
not the token signifying empty. Only if both the form and lemma are both the same token
as empty and there is no empty assumption, will they not be assigned to None.

¢ _line_number — The line number for this Token in a CoNLL-U file. For internal use
mostly.

Raises ParseError — If the provided source is not composed of 10 tab separated columns.

conll ()
Convert Token to the CoONLL-U representation.

Note that this does not include a newline at the end.
Returns A string representing the token as a line in a CoNLL-U file.

form
Provide the word form of this Token. This property makes it readonly.

Returns The Token wordform.

is_multiword()
Checks if this token is a multiword token.

Returns True if this token is a multiword token, and False otherwise.

This is the homepage for pyconll documentation. Here you can find module interfaces, changelogs, and example
code. Simply look above to the table of contents for more info.

If you are looking for example code, please see the examples directory on github.

11.2. API 33

https://github.com/matgrioni/pyconll/

pyconll Documentation, Release 1.0.2

34 Chapter 11. token

Python Module Index

P

pyconll.
pyconll.
pyconll.
pyconll.
pyconll.
pyconll.
pyconll.
pyconll.
pyconll.

conllable, 11
exception, 13

load,
tree.
tree.
unit.
unit.
unit.
util,

16
sentencetree, 19
tree, 21
conll, 25
sentence, 28
token, 32

23

35

pyconll Documentation, Release 1.0.2

36 Python Module Index

Index

Symbols

__contains__() (pyconll.unit.conll.Conll method), 25
__delitem__() (pyconll.unit.conll.Conll method), 25
__eq__() (pyconll.unit.sentence.Sentence method), 28
__eq__() (pyconll.unit.token.Token method), 32
__getitem__() (pyconll.tree.tree. Tree method), 21
__getitem__ () (pyconll.unit.conll.Conll method), 25
__getitem__() (pyconll.unit.sentence.Sentence method),
28
__init_ () (pyconll.tree.sentencetree.SentenceTree
method), 19
__init__() (pyconll.tree.tree. Tree method), 21
__init__() (pyconll.unit.conll.Conll method), 26
__init__() (pyconll.unit.sentence.Sentence method), 28
__init__() (pyconll.unit.token.Token method), 32
__iter__() (pyconll.tree.tree.Tree method), 21
__iter__() (pyconll.unit.conll.Conll method), 26
__iter__() (pyconll.unit.sentence.Sentence method), 28
__len__() (pyconll.tree.tree. Tree method), 21
__len__() (pyconll.unit.conll.Conll method), 26
__len__() (pyconll.unit.sentence.Sentence method), 28
__metaclass__ (pyconll.conllable.Conllable attribute), 11
__setitem__ () (pyconll.unit.conll.Conll method), 26

C

children (pyconll.tree.tree. Tree attribute), 21

Conll (class in pyconll.unit.conll), 25

conll() (pyconll.conllable.Conllable method), 11

conll() (pyconll.tree.sentencetree.SentenceTree method),
19

conll() (pyconll.unit.conll.Conll method), 26

conll() (pyconll.unit.sentence.Sentence method), 28

conll() (pyconll.unit.token.Token method), 33

Conllable (class in pyconll.conllable), 11

D

doc_id (pyconll.unit.sentence.Sentence attribute), 29

F

find_ngrams() (in module pyconll.util), 23
form (pyconll.unit.token.Token attribute), 33
FormatError, 13

id (pyconll.unit.sentence.Sentence attribute), 29
insert() (pyconll.unit.conll.Conll method), 26
is_multiword() (pyconll.unit.token.Token method), 33
iter_from_file() (in module pyconll.load), 16
iter_from_string() (in module pyconll.load), 16
iter_from_url() (in module pyconll.load), 16

L

load_from_file() (in module pyconll.load), 16
load_from_string() (in module pyconll.load), 16
load_from_url() (in module pyconll.load), 16

M

meta_present() (pyconll.unit.sentence.Sentence method),
29

meta_value() (pyconll.unit.sentence.Sentence method),
29

P

par_id (pyconll.unit.sentence.Sentence attribute), 29
parent (pyconll.tree.tree. Tree attribute), 22
ParseError, 13

pyconll.conllable (module), 11
pyconll.exception (module), 13
pyconll.load (module), 16
pyconll.tree.sentencetree (module), 19
pyconll.tree.tree (module), 21
pyconll.unit.conll (module), 25
pyconll.unit.sentence (module), 28
pyconll.unit.token (module), 32
pyconll.util (module), 23

S

Sentence (class in pyconll.unit.sentence), 28

37

pyconll Documentation, Release 1.0.2

sentence (pyconll.tree.sentencetree.SentenceTree at-
tribute), 19

SentenceTree (class in pyconll.tree.sentencetree), 19

set_meta() (pyconll.unit.sentence.Sentence method), 29

T

text (pyconll.unit.sentence.Sentence attribute), 29

Token (class in pyconll.unit.token), 32

Tree (class in pyconll.tree.tree), 21

tree (pyconll.tree.sentencetree.SentenceTree attribute), 19

W

write() (pyconll.unit.conll.Conll method), 26

38

Index

	pyconll
	Links

	CHANGELOG
	[1.1.0] - 2018-11-11
	[1.0.1] - 2018-09-14
	[1.0] - 2018-09-13
	[0.3.1] - 2018-08-08
	[0.3] - 2018-07-28
	[0.2.3] - 2018-07-23
	[0.2.2] - 2018-07-18
	[0.2.1] - 2018-07-18
	[0.2] - 2018-07-16
	[0.1.1] - 2018-07-15
	[0.1] - 2018-07-04

	conllable
	API

	exception
	API

	load
	Example
	API

	sentencetree
	API

	tree
	API

	util
	API

	conll
	API

	sentence
	Comments
	Document and Paragraph ID
	Tokens
	API

	token
	Fields
	API

	Python Module Index

