
pyconll Documentation
Release 2.0.0

Matias Grioni

Sep 05, 2019

Contents

1 pyconll 3
1.1 Links . 3

2 CHANGELOG 7
2.1 [2.1.0] - 2019-08-30 . 7
2.2 [2.0.0] - 2019-05-09 . 7
2.3 [1.1.4] - 2019-04-15 . 8
2.4 [1.1.3] - 2019-01-03 . 8
2.5 [1.1.2] - 2018-12-28 . 8
2.6 [1.1.1] - 2018-12-10 . 9
2.7 [1.1.0] - 2018-11-11 . 9
2.8 [1.0.1] - 2018-09-14 . 9
2.9 [1.0] - 2018-09-13 . 9
2.10 [0.3.1] - 2018-08-08 . 10
2.11 [0.3] - 2018-07-28 . 10
2.12 [0.2.3] - 2018-07-23 . 10
2.13 [0.2.2] - 2018-07-18 . 11
2.14 [0.2.1] - 2018-07-18 . 11
2.15 [0.2] - 2018-07-16 . 11
2.16 [0.1.1] - 2018-07-15 . 11
2.17 [0.1] - 2018-07-04 . 11

3 Getting Started 13
3.1 Overview . 13
3.2 Loading CoNLL-U . 13
3.3 Traversing CoNLL-U . 13
3.4 Outputting CoNLL-U . 14
3.5 Conclusion . 14

4 load 15
4.1 Example . 15
4.2 API . 16

5 token 19
5.1 Fields . 19
5.2 API . 20

i

6 sentence 23
6.1 Comments . 23
6.2 Tokens . 23
6.3 API . 24

7 conll 27
7.1 API . 27

8 tree 29
8.1 API . 29

9 util 31
9.1 API . 31

10 conllable 33
10.1 API . 33

11 exception 35
11.1 API . 35

Python Module Index 37

Index 39

ii

pyconll Documentation, Release 2.0.0

Contents 1

https://travis-ci.org/pyconll/pyconll
https://coveralls.io/github/pyconll/pyconll?branch=master
https://pyconll.readthedocs.io/en/latest/?badge=latest

pyconll Documentation, Release 2.0.0

2 Contents

CHAPTER 1

pyconll

Easily work with **CoNLL* files using the familiar syntax of python.*

The current version is 2.1.0. This version is fully functional, stable, tested, documented, and actively developed.

1.1 Links

• Homepage

• Documentation

1.1.1 Installation

As with most python packages, simply use pip to install from PyPi.

pip install pyconll

This package is designed for, and only tested with python 3.4 and up and will not be backported to python 2.x.

1.1.2 Motivation

This tool is intended to be a minimal, low level, and functional library in a widely used programming language.
pyconll creates a thin API on top of raw CoNLL annotations that is simple and intuitive in a popular programming
language.

In my work with the Universal Dependencies project, I saw a dissapointing lack of low level APIs for working with
the CoNLL-U format. Most tooling focuses on graph transformations and DSLs for terse, automated changes. Tools
such as Grew and Treex are very powerful and productive, but have a learning curve and are limited the scope of their
DSLs. CL-CoNLLU is simple and low level, but Common Lisp is not widely used in NLP, and difficult to pickup for
beginners. UDAPI is in python but it is very large and has little guidance. pyconll attempts to fill the gaps between
what other projects have accomplished.

3

https://pyconll.github.io
https://pyconll.readthedocs.io/
http://grew.fr/
http://ufal.mff.cuni.cz/treex
https://github.com/own-pt/cl-conllu/
http://udapi.github.io/

pyconll Documentation, Release 2.0.0

Other useful tools can be found on the Universal Dependencies website.

Hopefully, individual researchers find pyconll useful, and will use it as a building block for their tools and projects. py-
conll affords a standardized and complete base for building larger projects without worrying about CoNLL annotation
and output.

1.1.3 Code Snippet

This snippet finds what lemmas are marked as AUX which is a closed class POS in UD
import pyconll

UD_ENGLISH_TRAIN = './ud/train.conll'

train = pyconll.load_from_file(UD_ENGLISH_TRAIN)

aux_lemmas = set()
for sentence in train:

for token in sentence:
if token.upos == 'AUX':

aux_lemmas.add(token.lemma)

1.1.4 Uses and Limitations

This package edits CoNLL-U annotations. This does not include the annotated text itself. Word forms on Tokens
are not editable and Sentence Tokens cannot be reassigned or reordered. pyconll focuses on editing CoNLL-
U annotation rather than creating it or changing the underlying text that is annotated. If there is interest in this
functionality area, please create a github issue for more visibility.

This package also is only validated against the CoNLL-U format. The CoNLL and CoNLL-X format are not supported,
but are very similar. I originally intended to support these formats as well, but their format is not as well defined as
CoNLL-U so they are not included. Please create an issue for visibility if this feature interests you.

Lastly, linguistic data can often be very large and this package attempts to keep that in mind. pyconll provides methods
for creating in memory conll objects along with an iterate only version in case a corpus is too large to store in memory
(the size of the memory structure is a little bit larger than the actual corpus file). The iterate only version can parse
upwards of 100,000 words per second on a 16gb ram machine, so for most datasets to be used on a dev machine, this
package will perform well.

1.1.5 Contributing

Contributions to this project are welcome and encouraged! If you are unsure how to contribute, here is a guide from
Github explaining the basic workflow. After cloning this repo, please run make hooks and pip install -r
requirements.txt to properly setup locally. make hooks setups up a pre-push hook to validate that code
matches the default YAPF style. While this is technically optional, it is highly encouraged. pip install -r
requirements.txt sets up environment dependencies like yapf, twine, sphinx, etc.

README and CHANGELOG

When changing either of these files, please change the Markdown version and run make docs so that the other
versions stay in sync.

4 Chapter 1. pyconll

https://universaldependencies.org/tools.html
https://help.github.com/en/articles/creating-a-pull-request-from-a-fork

pyconll Documentation, Release 2.0.0

Code Formatting

Code formatting is done automatically on push if githooks are setup properly. The code formatter is YAPF, and using
this ensures that coding style stays consistent over time and between authors.

1.1. Links 5

https://github.com/google/yapf

pyconll Documentation, Release 2.0.0

6 Chapter 1. pyconll

CHAPTER 2

CHANGELOG

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

2.1 [2.1.0] - 2019-08-30

2.1.1 Fixed

• The example reannotate_ngrams.py was out of sync with the function return type

2.1.2 Added

• ‘find_nonprojective_deps‘‘ was added to look for non-projective dependencies within a sentence

2.2 [2.0.0] - 2019-05-09

2.2.1 Fixed

• find_ngrams in the util module did not properly match case insensitivity.

• conllable is now properly included in wildcard imports from pyconll.

• Issue when loading a CoNLL file over a network if the file contained UTF-8 characters. requests default assumes
ASCII enconding on HTTP responses.

• The Token columns deps and feats were not properly sorted by attribute (either numeric index or case invariant
lexicographic sort) on serialization

7

http://keepachangelog.com/en/1.0.0/
http://semver.org/spec/v2.0.0.html

pyconll Documentation, Release 2.0.0

2.2.2 Changed

• Clearer and more consise documentation

• find_ngrams now returns the matched tokens as the last element of the yielded tuple.

2.2.3 Removed

• Document and paragraph ids on Sentences

• Line numbers on Tokens and Sentences

• Equality comparison on Tokens and Sentences. These types are mutable and implementing equality (with no
hash overriding) causes issues for API clients.

• SentenceTree module. This functionaliy was moved to the Sentence class method to_tree.

2.2.4 Added

• to_tree method on Sentence that returns the Tree representing the Sentence dependency structure

2.2.5 Security

• Updates to requirements.txt to patch Jinja2 and requests

2.3 [1.1.4] - 2019-04-15

2.3.1 Fixed

• Parsing of underscore’s for the form and lemma field, would automatically default to None, rather than the
intended behavior.

2.4 [1.1.3] - 2019-01-03

2.4.1 Fixed

• When used on Windows, the default encoding of Windows-1252 was used when loading CoNLL-U files, how-
ever, CoNLL-U is UTF-8. This is now fixed.

2.5 [1.1.2] - 2018-12-28

2.5.1 Added

• Getting Started page on the documentation to make easier for newcomers

8 Chapter 2. CHANGELOG

pyconll Documentation, Release 2.0.0

2.5.2 Fixed

• Versioning on docs page which had not been properly updated

• Some documentation errors

• requests version used in requirements.txt was insecure and updated to newer version

2.6 [1.1.1] - 2018-12-10

2.6.1 Fixed

• The pyconll.tree module was not properly included before in setup.py

2.7 [1.1.0] - 2018-11-11

2.7.1 Added

• pylint to build process

• Conllable abstract base class to mark CoNLL serializable components

• Tree data type construction of a sentence

2.7.2 Changed

• Linting patches suggested by pylint.

• Removed _end_line_number from Sentence constructor. This is an internal patch, as this parameter was
not meant to be used by callers.

• New, improved, and clearer documentation

• Update of requests dependency due to security flaw

2.8 [1.0.1] - 2018-09-14

2.8.1 Changed

• Removed test packages from final shipped package.

2.9 [1.0] - 2018-09-13

2.9.1 Added

• There is now a FormatError to help make debugging easier if the internal data of a Token is put into an invalid
state. This error will be seen on running Token#conll.

2.6. [1.1.1] - 2018-12-10 9

pyconll Documentation, Release 2.0.0

• Certain token fields with empty values, were not output when calling Token#conll and were instead ignored.
This situation now causes a FormatError.

• Stricter parsing and validation of general CoNLL guidelines.

2.9.2 Fixed

• DEPS parsing was broken before and assumed that there was less information than is actually possible in the
UD format. This means that now deps is a tuple with cardinality 4.

2.10 [0.3.1] - 2018-08-08

2.10.1 Fixed

• Fixed issue with submodules not being packaged in build

2.11 [0.3] - 2018-07-28

2.11.1 Added

• Ability to easily load CoNLL files from a network path (url)

• Some parsing validation. Before the error was not caught up front so the error could unexpectedly later show
up.

• Sentence slicing had an issue before if either the start or end was omittted.

• More documentation and examples.

• Conll is now a MutableSequence, so it handles methods beyond its implementation as well as defined by
python.

2.11.2 Fixed

• Some small bug fixes with parsing the token dicts.

2.12 [0.2.3] - 2018-07-23

2.12.1 Fixed

• Issues with documentation since docstrings were not in RST. Fixed by using napoleon sphinx extension

2.12.2 Added

• A little more docs

• More README info

• Better examples

10 Chapter 2. CHANGELOG

pyconll Documentation, Release 2.0.0

2.13 [0.2.2] - 2018-07-18

2.13.1 Fixed

• Installation issues again with wheel when using pip.

2.14 [0.2.1] - 2018-07-18

2.14.1 Fixed

• Installation issues when using pip

2.15 [0.2] - 2018-07-16

2.15.1 Added

• More documentation

• Util package for convenient and common logic

2.16 [0.1.1] - 2018-07-15

2.16.1 Added

• Documentation which can be found here.

• Small documentation changes on methods.

2.17 [0.1] - 2018-07-04

2.17.1 Added

• Everything. This is the first release of this package. The most notable absence is documentation which will be
coming in a near-future release.

2.13. [0.2.2] - 2018-07-18 11

https://pyconll.readthedocs.io/en/latest/

pyconll Documentation, Release 2.0.0

12 Chapter 2. CHANGELOG

CHAPTER 3

Getting Started

3.1 Overview

pyconll is a low level wrapper around the CoNLL-U format. This document explains how to quickly get started
loading and manipulating CoNLL-U files within pyconll, and will go through a typical end-to-end scenario.

To install the library, run pip install pyconll from your python enlistment.

3.2 Loading CoNLL-U

To start, a CoNLL-U resource must be loaded, and pyconll can load from files, urls, and strings. Specific API
information can be found in the load module documentation. Below is a typical example of loading a file on the local
computer.

import pyconll

my_conll_file_location = './ud/train.conll'
train = pyconll.load_from_file(my_conll_file_location)

Loading methods usually return a Conll object, but some methods return an iterator over Sentences and do not
load the entire Conll object into memory at once.

3.3 Traversing CoNLL-U

After loading a CoNLL-U file, we can traverse the CoNLL-U structure; Conll objects wrap Sentences and
Sentences wrap Token. Here is what traversal normally looks like.

for sentence in train:
for token in sentence:

(continues on next page)

13

pyconll/load.html

pyconll Documentation, Release 2.0.0

(continued from previous page)

Do work within loops
pass

Statistics such as lemmas for a certain closed class POS or number of non-projective punctuation dependencies can
be computed through these loops. As an abstract example, we have defined some predicate, sentence_pred, and
some transformation of noun tokens, noun_token_transformation, and we wish to transform all nouns in
sentences that match our predicate, we can write the following.

for sentence in train:
if sentence_pred(sentence):

for token in sentence:
if token.pos == 'NOUN':

noun_token_transformation(token)

Note that most objects in pyconll are mutable, except for a select few fields, so changing the Token object remains
with the Sentence.

3.4 Outputting CoNLL-U

Once you are done working with a Conll object, you may need to output your results. The object can be serial-
ized back into the CoNLL-U format, through the conll method. Conll, Sentence, and Token objects are all
Conllable which means they have a corresponding conll method which serializes the objects into the appropriate
string representation.

3.5 Conclusion

pyconll allows for easy CoNLL-U loading, traversal, and serialization. Developers can define their own transfor-
mation or analysis of the loaded CoNLL-U data, and pyconll handles all the parsing and serialization logic. There are
still some parts of the library that are not covered here such as the Tree data structure, loading files from network,
and error handling, but the information on this page will get developers through the most important use cases.

14 Chapter 3. Getting Started

CHAPTER 4

load

This module defines the main interface to load CoNLL treebank resources. CoNLL treebanks can be loaded through
a string, file, or network resource. CoNLL resources can be loaded and held in memory, or simply iterated through a
sentence at a time which is useful in the case of very large files.

The fully qualified name of the module is pyconll.load, but these methods are imported at the pyconll names-
pace level.

4.1 Example

This example counts the number of times a token with a lemma of linguistic appeared in the treebank. If all the
operations that will be done on the CoNLL file are readonly or are data aggregations, the iter_from alternatives
are more memory efficient alternative as well. These methods will return an iterator over the sentences in the CoNLL
resource rather than storing the CoNLL object in memory, which can be convenient when dealing with large files that
do not need be completely loaded. This example uses the load_from_file method for illustration purposes.

import pyconll

example_treebank = '/home/myuser/englishdata.conll'
conll = pyconll.load_from_file(example_treebank)

count = 0
for sentence in conll:

for word in sentence:
if word.lemma == 'linguistic':

count += 1

print(count)

15

pyconll Documentation, Release 2.0.0

4.2 API

A wrapper around the Conll class to easily load treebanks from multiple formats. This module can also load resources
by iterating over treebank data without storing Conll objects in memory. This module is the main entrance to pyconll’s
functionalities.

pyconll.load.iter_from_file(filename)
Iterate over a CoNLL-U file’s sentences.

Parameters filename – The name of the file whose sentences should be iterated over.

Yields The sentences that make up the CoNLL-U file.

Raises

• IOError if there is an error opening the file.

• ParseError – If there is an error parsing the input into a Conll object.

pyconll.load.iter_from_string(source)
Iterate over a CoNLL-U string’s sentences.

Use this method if you only need to iterate over the CoNLL-U file once and do not need to create or store the
Conll object.

Parameters source – The CoNLL-U string.

Yields The sentences that make up the CoNLL-U file.

Raises ParseError – If there is an error parsing the input into a Conll object.

pyconll.load.iter_from_url(url)
Iterate over a CoNLL-U file that is pointed to by a given URL.

Parameters url – The URL that points to the CoNLL-U file.

Yields The sentences that make up the CoNLL-U file.

Raises

• requests.exceptions.RequestException – If the url was unable to be properly
retrieved.

• ParseError – If there is an error parsing the input into a Conll object.

pyconll.load.load_from_file(filename)
Load a CoNLL-U file given its location.

Parameters filename – The location of the file.

Returns A Conll object equivalent to the provided file.

Raises

• IOError – If there is an error opening the given filename.

• ParseError – If there is an error parsing the input into a Conll object.

pyconll.load.load_from_string(source)
Load the CoNLL-U source in a string into a Conll object.

Parameters source – The CoNLL-U formatted string.

Returns A Conll object equivalent to the provided source.

Raises ParseError – If there is an error parsing the input into a Conll object.

16 Chapter 4. load

pyconll Documentation, Release 2.0.0

pyconll.load.load_from_url(url)
Load a CoNLL-U file at the provided URL.

Parameters url – The URL that points to the CoNLL-U file. This URL should be the actual
CoNLL file and not an HTML page.

Returns A Conll object equivalent to the provided file.

Raises

• requests.exceptions.RequestException – If the url was unable to be properly
retrieved and status was 4xx or 5xx.

• ParseError – If there is an error parsing the input into a Conll object.

4.2. API 17

pyconll Documentation, Release 2.0.0

18 Chapter 4. load

CHAPTER 5

token

The Token module represents a CoNLL token annotation. In a CoNLL file, this is a non-empty, non-comment line.
Token members correspond directly with the Universal Dependencies CoNLL definition and all members are stored
as strings. This means ids are strings as well. These fields are: id, form, lemma, upos, xpos, feats, head,
deprel, deps, misc. More information on these is found below.

5.1 Fields

All fields are strings except for feats, deps, and misc, which are dicts. Each of these fields has specific
semantics per the UDv2 guidelines. Since these fields are dicts these means modifying them uses python’s natural
syntax for dictionaries.

5.1.1 feats

feats is a key-value mapping from str to set. An example entry would be key Gender with value
set((Feminine,)). More features could be added to an existing key by adding to its set, or a new feature
could be added by adding to the dictionary. All features must have at least one value, so any keys with empty sets will
throw an error on serialization back to text.

5.1.2 deps

deps is a key-value mapping from str to tuple of cardinality 4. This field represents enhanced dependencies.
The key is the index of the token head, and the tuple elements define the enhanced dependency. Most Universal
Dependencies treebanks, only use 2 of these 4 dimensions: the token index and the relation. See the Universal
Dependencies guideline for more information on these 4 components. When adding new deps, the values must also
be tuples of cardinality 4.

19

https://universaldependencies.org/format#conll-u-format

pyconll Documentation, Release 2.0.0

5.1.3 misc

For misc, the documentation only specifies that values be separated by a ‘|’, so not all keys have to have a value. So,
values on misc are either None, or a set of str. A key with a value of None is output as a singleton, with no
separating ‘=’. A key with a corresponding set value will be handled like feats.

5.1.4 Examples

Below is an example of adding a new feature to a token, where the key must first be initialized:

token.feats['NewFeature'] = set(('No',))

or alternatively as:

token.feats['NewFeature'] = set()
token.feats['NewFeature'].add('No')

On the miscellaneous column, adding a singleton field is done with the following line:

token.misc['SingletonFeature'] = None

5.2 API

Defines the Token type and parsing and output logic. A Token is the based unit in CoNLL-U and so the data and
parsing in this module is central to the CoNLL-U format.

class pyconll.unit.token.Token(source, empty=False)
A token in a CoNLL-U file. This consists of 10 columns, each separated by a single tab character and ending in
an LF (‘n’) line break. Each of the 10 column values corresponds to a specific component of the token, such as
id, word form, lemma, etc.

This class does not do any formatting validation on input or output. This means that invalid input may be
properly processed and then output. Or that client changes to the token may result in invalid data that can then
be output. Properly formatted CoNLL-U will always work on input and as long as all basic units are strings
output will work as expected. The result may just not be proper CoNLL-U.

Also note that the word form for a token is immutable. This is because CoNLL-U is inherently interested in
annotation schemes and not storing sentences.

__init__(source, empty=False)
Construct a Token from the given source line.

A Token line ends in an an LF line break according to the CoNLL-U specification. However, this method
accepts a line with or without the LF line break.

On parsing, a ‘_’ in the form and lemma is ambiguous and either refers to an empty value or to an actual
underscore. The empty parameter flag controls how this situation should be handled.

This method also guarantees properly processing valid input, but invalid input may not be parsed properly.
Some inputs that do not follow the CoNLL-U specification may still be parsed properly and as expected.
So proper parsing is not an indication of validity.

Parameters

• line – The line that represents the Token in CoNLL-U format.

20 Chapter 5. token

pyconll Documentation, Release 2.0.0

• empty – A flag to control if the word form and lemma can be assumed to be empty and
not the token signifying empty. If both the form and lemma are underscores and empty is
set to False (there is no empty assumption), then the form and lemma will be underscores
rather than None.

Raises ParseError – On various parsing errors, such as not enough columns or improper
column values.

conll()
Convert this Token to its CoNLL-U representation.

A Token’s CoNLL-U representation is a line. Note that this method does not include a newline at the end.

Returns A string representing the Token in CoNLL-U format.

form
Provide the word form of this Token. This property is read only.

Returns The Token form.

is_multiword()
Checks if this Token is a multiword token.

Returns True if this token is a multiword token, and False otherwise.

5.2. API 21

pyconll Documentation, Release 2.0.0

22 Chapter 5. token

CHAPTER 6

sentence

The Sentence module represents an entire CoNLL sentence, which is composed of comments and tokens.

6.1 Comments

Comments are treated as key-value pairs, separated by the = character. A singleton comment has no = present. In
this situation the key is the comment string, and the value is None. Methods for reading and writing cmoments on
Sentences are prefixed with meta_, and are found below.

For convenience, the id and text comments are accessible through member properties on the Sentence in addition
to metadata methods. So sentence.id and sentence.meta_value('id') are equivalent but the former is
more concise and readable. Since this API does not support changing a token’s form, the text comment cannot be
changed. Text translations or transliterations can still be added just like any other comment.

6.1.1 Document and Paragraph ID

In previous versions of pyconll, the document and paragraph id of a Sentence were extracted similar to text and id
information. This causes strange results and semantics when adding Sentences to a Conll object since the added
sentence may have a newpar or newdoc comment which affects all subsequent Sentence ids. For simplicity’s sake,
this information is now only directly available as normal metadata information.

6.2 Tokens

This is the heart of the sentence. Tokens can be indexed on Sentences through their id value, as a string, or as a numeric
index. So all of the following calls are valid, sentence['5'], sentence['2-3'], sentence['2.1'], and
sentence[2]. Note that sentence[x] and sentence[str(x)] are not interchangeable. These calls are both
valid but have different meanings.

23

pyconll Documentation, Release 2.0.0

6.3 API

Defines the Sentence type and the associated parsing and output logic.

class pyconll.unit.sentence.Sentence(source)
A sentence in a CoNLL-U file. A sentence consists of several components.

First, are comments. Each sentence must have two comments per UD v2 guidelines, which are sent_id and text.
Comments are stored as a dict in the meta field. For singleton comments with no key-value structure, the value
in the dict has a value of None.

Note the sent_id field is also assigned to the id property, and the text field is assigned to the text property
for usability, and their importance as comments. The text property is read only along with the paragraph and
document id. This is because the paragraph and document id are not defined per Sentence but across multiple
sentences. Instead, these fields can be changed through changing the metadata of the Sentences.

Then comes the token annotations. Each sentence is made up of many token lines that provide annotation to the
text provided. While a sentence usually means a collection of tokens, in this CoNLL-U sense, it is more useful
to think of it as a collection of annotations with some associated metadata. Therefore the text of the sentence
cannot be changed with this class, only the associated annotations can be changed.

__getitem__(key)
Return the desired tokens from the Sentence.

Parameters key – The indicator for the tokens to return. Can either be an integer, a string, or
a slice. For an integer, the numeric indexes of Tokens are used. For a string, the id of the
Token is used. And for a slice the start and end must be the same data types, and can be both
string and integer.

Returns If the key is a string then the appropriate Token. The key can also be a slice in which
case a list of tokens is provided.

__init__(source)
Construct a Sentence object from the provided CoNLL-U string.

Parameters source – The raw CoNLL-U string to parse. Comments must precede token lines.

Raises ParseError – If there is any token that was not valid.

__iter__()
Iterate through all the tokens in the Sentence including multiword tokens.

__len__()
Get the length of this sentence.

Returns The amount of tokens in this sentence. In the CoNLL-U sense, this includes both all
the multiword tokens and their decompositions.

conll()
Convert the sentence to a CoNLL-U representation.

Returns A string representing the Sentence in CoNLL-U format.

id
Get the sentence id.

Returns The sentence id. If there is none, then returns None.

meta_present(key)
Check if the key is present as a singleton or as a pair.

Parameters key – The value to check for in the comments.

24 Chapter 6. sentence

pyconll Documentation, Release 2.0.0

Returns True if the key was provided as a singleton or as a key value pair. False otherwise.

meta_value(key)
Returns the value associated with the key in the metadata (comments).

Parameters key – The key whose value to look up.

Returns The value associated with the key as a string. If the key is a singleton then None is
returned.

Raises KeyError – If the key is not present in the comments.

set_meta(key, value=None)
Set the metadata or comments associated with this Sentence.

Parameters

• key – The key for the comment.

• value – The value to associate with the key. If the comment is a singleton, this field can
be ignored or set to None.

text
Get the continuous text for this sentence. Read-only.

Returns The continuous text of this sentence. If none is provided in comments, then None is
returned.

to_tree()
Creates a Tree data structure from the current sentence.

An empty sentence will create a Tree with no data and no children.

Returns A constructed Tree that represents the dependency graph of the sentence.

6.3. API 25

pyconll Documentation, Release 2.0.0

26 Chapter 6. sentence

CHAPTER 7

conll

This module represents a CoNLL file: a collection of CoNLL annotated sentences. Users should use the load module
to create CoNLL objects rather than directly using the class constructor. The Conll object is a wrapper around a list
of sentences that can be serialized into a CoNLL format, i.e. it is Conllable.

Conll is a subclass of MutableSequence, so append, reverse, extend, pop, remove, and __iadd__
are available free of charge, even though they are not defined below. This information can be found on the collections
documentation.

7.1 API

Defines the Conll type and the associated parsing and output logic.

class pyconll.unit.conll.Conll(it)
The abstraction for a CoNLL-U file. A CoNLL-U file is more or less just a collection of sentences in order.
These sentences are accessed by numeric index. Note that sentences must be separated by whitespace. CoNLL-
U also specifies that the file must end in a new line but that requirement is relaxed here in parsing.

__contains__(other)
Check if the Conll object has this sentence.

Parameters other – The sentence to check for.

Returns True if this Sentence is exactly in the Conll object. False, otherwise.

__delitem__(key)
Delete the Sentence corresponding with the given key.

Parameters key – The info to get the Sentence to delete. Can be the integer position in the file,
or a slice.

__getitem__(key)
Index a sentence by key value.

Parameters key – The key to index the sentence by. This key can either be a numeric key, or a
slice.

27

../load.html
../conllable.html
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes

pyconll Documentation, Release 2.0.0

Returns The corresponding sentence if the key is an int or the sentences if the key is a slice in
the form of another Conll object.

Raises TypeError – If the key is not an integer or slice.

__init__(it)
Create a CoNLL-U file collection of sentences.

Parameters it – An iterator of the lines of the CoNLL-U file.

Raises ParseError – If there is an error constructing the sentences in the iterator.

__iter__()
Allows for iteration over every sentence in the CoNLL-U file.

Yields An iterator over the sentences in this Conll object.

__len__()
Returns the number of sentences in the CoNLL-U file.

Returns The size of the CoNLL-U file in sentences.

__setitem__(key, sent)
Set the given location to the Sentence.

Parameters key – The location in the Conll file to set to the given sentence. This only accepts
integer keys and accepts negative indexing.

conll()
Output the Conll object to a CoNLL-U formatted string.

Returns The CoNLL-U object as a string. This string will end in a newline.

insert(index, value)
Insert the given sentence into the given location.

This function behaves in the same way as python lists insert.

Parameters

• index – The numeric index to insert the sentence into.

• value – The sentence to insert.

write(writable)
Write the Conll object to something that is writable.

For simply writing, this method is more efficient than calling conll than writing since no string of the entire
Conll object is created. The final output will include a final newline.

Parameters writable – The writable object such as a file. Must have a write method.

28 Chapter 7. conll

CHAPTER 8

tree

Tree is a very basic immutable tree class. A Tree can have multiple children and has one parent. The parent and
child of a tree are established when a Tree is created. Accessing the data on a Tree can be done through the data
member. A Tree is created through the TreeBuilder module which is an internal API in pyconll. A Tree’s use
in pyconll is when creating a Tree structure from a Sentence object in the sentencetree module.

8.1 API

A general immutable tree module. This module is used when parsing a serial sentence into a Tree structure.

class pyconll.tree.tree.Tree
A tree node. This is the base representation for a tree, which can have many children which are accessible via
child index. The tree’s structure is immutable, so the data, parent, children cannot be changed once created.

As is this class is useless, and must be created with the TreeBuilder module which is a sort of friend class of
Tree to maintain its immutable public contract.

__getitem__(key)
Get specific children from the Tree. This can be an integer or slice.

Parameters key – The indexer for the item.

__init__()
Create a new empty tree. To create a useful Tree, use TreeBuilder.

__iter__()
Provides an iterator over the children.

__len__()
Provides the number of direct children on the tree.

Returns The number of direct children on the tree.

data
The data on the tree node. The property ensures it is readonly.

29

pyconll Documentation, Release 2.0.0

Returns The data stored on the Tree. No data is represented as None.

parent
Provides the parent of the Tree. The property ensures it is readonly.

Returns A pointer to the parent Tree reference. None if there is no parent.

30 Chapter 8. tree

CHAPTER 9

util

This module provides additional, common methods that build off of the API layer. This module simply adds logic,
rather than extending the API. Right now this module is pretty sparse, but will be extended as needed.

9.1 API

A set of utilities for dealing with pyconll defined types. This is simply a collection of functions.

pyconll.util.find_ngrams(conll, ngram, case_sensitive=True)
Find the occurences of the ngram in the provided Conll collection.

This method returns every sentence along with the token position in the sentence that starts the ngram. The
matching algorithm does not currently account for multiword tokens, so “don’t” should be separated into “do”
and “not” in the input.

Parameters

• sentence – The sentence in which to search for the ngram.

• ngram – The ngram to search for. A random access iterator.

• case_sensitive – Flag to indicate if the ngram search should be case sensitive. The
case insensitive comparison currently is locale insensitive lowercase comparison.

Returns An iterator of tuples over the ngrams in the Conll object. The first element is the sentence,
the second element is the numeric token index, and the last element is the actual list of tokens
references from the sentence. This list does not include any multiword token that were skipped
over.

pyconll.util.find_nonprojective_deps(sentence)
Find the nonprojective dependency pairs in the provided sentence.

Dependencies are provided as a list of ordered pairs. Each ordered pair represents a non-projective dependency
pair. Each element in the ordered pair is a token, that makes a dependency with its governor. So each token is
the base of its dependency, and the two tokens’ dependencies cross in a non projective way.

31

pyconll Documentation, Release 2.0.0

Parameters sentence – The sentence to check for nonprojective dependency pairs.

Returns An iterable of pairs which represent the children of a nonprojective dependency pair.

32 Chapter 9. util

CHAPTER 10

conllable

Conllablemarks a class that can be output as a CoNLL formatted string. Conllable classes implement a conll
method.

10.1 API

Holds the Conllable interface, which is a marker interface to show that a class is a Conll object, such as a treebank,
sentence, or token, and therefore has a conll method.

class pyconll.conllable.Conllable
A Conllable mixin to indicate that the component can be converted into a CoNLL representation.

conll()
Provides a conll representation of the component.

Returns A string conll representation of the base component.

Raises NotImplementedError – If the child class does not implement the method.

33

pyconll Documentation, Release 2.0.0

34 Chapter 10. conllable

CHAPTER 11

exception

Custom exceptions for pyconll. These errors are a ParseError and a FormatError.

A ParseError occurs when the source input to a CoNLL component is invalid, and a FormatError occurs when
the internal state of the component is invalid, and the component cannot be output to a CoNLL string.

11.1 API

Holds custom pyconll errors. These errors include parsing errors when reading treebanks, and errors when outputting
CoNLL objects.

exception pyconll.exception.FormatError
Error that results from trying to format a CoNLL object to a string.

exception pyconll.exception.ParseError
Error that results from an improper value into a parsing routine.

Welcome to the pyconll documentation homepage. Module documentation, changelogs, and guidance pages are
listed above in the table of contents. Those unsure where to start can see the load, conll, sentence, and token pages
which contain documentation for the base CoNLL-U data types. There is also the Getting Started page which goes
through an end-to-end example of using pyconll.

The github homepage has a limited set of examples, tests, and the source. Examples are currently limited. More
examples are planned to for creation in June 2019.

35

load.html
conll.html
sentence.html
token.html
starting.html
https://github.com/matgrioni/pyconll/

pyconll Documentation, Release 2.0.0

36 Chapter 11. exception

Python Module Index

p
pyconll.conllable, 33
pyconll.exception, 35
pyconll.load, 16
pyconll.tree.tree, 29
pyconll.unit.conll, 27
pyconll.unit.sentence, 24
pyconll.unit.token, 20
pyconll.util, 31

37

pyconll Documentation, Release 2.0.0

38 Python Module Index

Index

Symbols
__contains__() (pyconll.unit.conll.Conll method), 27
__delitem__() (pyconll.unit.conll.Conll method), 27
__getitem__() (pyconll.tree.tree.Tree method), 29
__getitem__() (pyconll.unit.conll.Conll method), 27
__getitem__() (pyconll.unit.sentence.Sentence method),

24
__init__() (pyconll.tree.tree.Tree method), 29
__init__() (pyconll.unit.conll.Conll method), 28
__init__() (pyconll.unit.sentence.Sentence method), 24
__init__() (pyconll.unit.token.Token method), 20
__iter__() (pyconll.tree.tree.Tree method), 29
__iter__() (pyconll.unit.conll.Conll method), 28
__iter__() (pyconll.unit.sentence.Sentence method), 24
__len__() (pyconll.tree.tree.Tree method), 29
__len__() (pyconll.unit.conll.Conll method), 28
__len__() (pyconll.unit.sentence.Sentence method), 24
__setitem__() (pyconll.unit.conll.Conll method), 28

C
Conll (class in pyconll.unit.conll), 27
conll() (pyconll.conllable.Conllable method), 33
conll() (pyconll.unit.conll.Conll method), 28
conll() (pyconll.unit.sentence.Sentence method), 24
conll() (pyconll.unit.token.Token method), 21
Conllable (class in pyconll.conllable), 33

D
data (pyconll.tree.tree.Tree attribute), 29

F
find_ngrams() (in module pyconll.util), 31
find_nonprojective_deps() (in module pyconll.util), 31
form (pyconll.unit.token.Token attribute), 21
FormatError, 35

I
id (pyconll.unit.sentence.Sentence attribute), 24
insert() (pyconll.unit.conll.Conll method), 28

is_multiword() (pyconll.unit.token.Token method), 21
iter_from_file() (in module pyconll.load), 16
iter_from_string() (in module pyconll.load), 16
iter_from_url() (in module pyconll.load), 16

L
load_from_file() (in module pyconll.load), 16
load_from_string() (in module pyconll.load), 16
load_from_url() (in module pyconll.load), 16

M
meta_present() (pyconll.unit.sentence.Sentence method),

24
meta_value() (pyconll.unit.sentence.Sentence method),

25

P
parent (pyconll.tree.tree.Tree attribute), 30
ParseError, 35
pyconll.conllable (module), 33
pyconll.exception (module), 35
pyconll.load (module), 16
pyconll.tree.tree (module), 29
pyconll.unit.conll (module), 27
pyconll.unit.sentence (module), 24
pyconll.unit.token (module), 20
pyconll.util (module), 31

S
Sentence (class in pyconll.unit.sentence), 24
set_meta() (pyconll.unit.sentence.Sentence method), 25

T
text (pyconll.unit.sentence.Sentence attribute), 25
to_tree() (pyconll.unit.sentence.Sentence method), 25
Token (class in pyconll.unit.token), 20
Tree (class in pyconll.tree.tree), 29

W
write() (pyconll.unit.conll.Conll method), 28

39

	pyconll
	Links

	CHANGELOG
	[2.1.0] - 2019-08-30
	[2.0.0] - 2019-05-09
	[1.1.4] - 2019-04-15
	[1.1.3] - 2019-01-03
	[1.1.2] - 2018-12-28
	[1.1.1] - 2018-12-10
	[1.1.0] - 2018-11-11
	[1.0.1] - 2018-09-14
	[1.0] - 2018-09-13
	[0.3.1] - 2018-08-08
	[0.3] - 2018-07-28
	[0.2.3] - 2018-07-23
	[0.2.2] - 2018-07-18
	[0.2.1] - 2018-07-18
	[0.2] - 2018-07-16
	[0.1.1] - 2018-07-15
	[0.1] - 2018-07-04

	Getting Started
	Overview
	Loading CoNLL-U
	Traversing CoNLL-U
	Outputting CoNLL-U
	Conclusion

	load
	Example
	API

	token
	Fields
	API

	sentence
	Comments
	Tokens
	API

	conll
	API

	tree
	API

	util
	API

	conllable
	API

	exception
	API

	Python Module Index
	Index

